Samsung Galaxy Tab S5e Wi-Fi - Specifications
Brand and model
Information about the brand, model and model alias (if any) of a specific device.
Brand Brand name of the company that manufactures the device. | Samsung |
Model Model name of the device. | Galaxy Tab S5e Wi-Fi |
Model alias Аlternative names, under which the model is known. | SM-T720C T720C SM-T720N T720N |
Design
Information about the dimensions and weight of the device, shown in different measurement units. Body materials, available colors, certifications.
Width Information about the width, i.e. the horizontal side of the device when it is used in its standard orientation. | 245 mm (millimeters) 24.5 cm (centimeters) 0.804 ft (feet) 9.646 in (inches) |
Height Information about the height, i.e. the vertical side of the device when it is used in its standard orientation. | 160 mm (millimeters) 16 cm (centimeters) 0.525 ft (feet) 6.299 in (inches) |
Thickness Information about the thickness/depth of the device in different measurement units. | 5.5 mm (millimeters) 0.55 cm (centimeters) 0.018 ft (feet) 0.217 in (inches) |
Weight Information about the weight of the device in different measurement units. | 399 g (grams) 0.88 lbs (pounds) 14.07 oz (ounces) |
Volume Estimated volume of the device, calculated from the dimensions provided by the manufacturer. Applies for devices in the form of a rectangular parallelepiped. | 215.6 cm³ (cubic centimeters) 13.09 in³ (cubic inches) |
Colors Information about the colors, in which the device is available in the market. | Silver Gold Black |
Body materials Materials used in the fabrication of the device's body. | Aluminium alloy |
Operating system
Operating system is the system software, which manages and controls the functioning of the hardware components of the device.
Operating system (OS) Information about the operating system used by the device as well as its version. | Android 9.0 Pie |
User interface (UI) Name and version of the user interface (UI) used by the operating system (OS). | One |
System on Chip (SoC)
A system on a chip (SoC) includes into a single chip some of the main hardware components of the mobile device.
SoC The SoC integrates different hardware components such as the CPU, GPU, memory, peripherals, interfaces, etc., as well as software for their functioning. | Qualcomm Snapdragon 670 (SDM670) |
Process technology Information about the process technology used in manufacturing the chip. The value in nanometers represents half the distance between elements that make up the CPU. | 10 nm (nanometers) |
CPU CPU is the Central Processing Unit or the processor of a mobile device. Its main function is to interpret and execute instructions contained in software applications. | 2x 2.0 GHz ARM Cortex-A75, 6x 1.7 GHz ARM Cortex-A55 (Kryo 360) |
CPU bits The CPU bits are determined by the bit-size of the processor registers, address buses and data buses. 64-bit CPUs provide better performance than 32-bit ones, which on their part perform better than 16-bit processors. | 64 bit |
Instruction set The instruction set architecture (ISA) is a set of commands used by the software to manage the CPU's work. Information about the set of instructions the processor can execute. | ARMv8.2-A |
CPU cores A CPU core is the processor unit, which executes software instructions. Presently, besides single-core processors, there are dual-core, quad-core, hexa-core and so on multi-core processors. They increase the performance of the device allowing the execution of multiple instructions in parallel. | 8 |
CPU frequency The frequency of the processor describes its clock rate in cycles per second. It is measured in Megahertz (MHz) or Gigahertz (GHz). | 2000 MHz (megahertz) |
GPU GPU is a graphical processing unit, which handles computation for 2D/3D graphics applications. In mobile devices GPU is usually utilized by games, UI, video playback, etc. GPU can also perform computation in applications traditionally handled by the CPU. | Qualcomm Adreno 615 |
GPU frequency The frequency is the clock rate of the graphic processor (GPU), which is measured in Megahertz (MHz) or Gigahertz (GHz). | 430 MHz (megahertz) |
RAM capacity RAM (Random-Access Memory) is used by the operating system and all installed applications. Data in the RAM is lost after the device is turned off or restarted. | 4 GB (gigabytes) 6 GB (gigabytes) |
RAM type Information about the type of RAM used by the device. | LPDDR4X |
RAM channels Information about the number of RAM channels integrated in the SoC. More channels mean higher data transfer rates. | Double channel |
RAM frequency RAM frequency relates directly to the rate of reading/writing from/in the RAM memory. | 1866 MHz (megahertz) |
Storage
Every mobile device has a built-in storage (internal memory) with a fixed capacity.
Storage Information about the capacity of the built-in storage of the device. Sometimes one and the same model may is offered in variants with different internal storage capacity. | 64 GB (gigabytes) 128 GB (gigabytes) |
eMMC 5.1 |
Memory cards
Memory cards are used in mobile devices for expanding their external storage capacity.
Types The various types of memory cards are characterized by different sizes and capacity. Information about the supported types of memory cards. | microSD microSDHC microSDXC |
Display
The display of a mobile device is characterized by its technology, resolution, pixel density, diagonal length, color depth, etc.
Type/technology One of the main characteristics of the display is its type/technology, on which depends its performance. | Super AMOLED |
Diagonal size In mobile devices display size is represented by the length of its diagonal measured in inches. | 10.5 in (inches) 266.7 mm (millimeters) 26.67 cm (centimeters) |
Width Approximate width of the display | 8.9 in (inches) 226.16 mm (millimeters) 22.62 cm (centimeters) |
Height Approximate height of the display | 5.56 in (inches) 141.35 mm (millimeters) 14.14 cm (centimeters) |
Aspect ratio The ratio between the long and the short side of the display | 1.6:1 16:10 |
Resolution The display resolution shows the number of pixels on the horizontal and vertical side of the screen. The higher the resolution is, the greater the detail of the displayed content. | 2560 x 1600 pixels |
Pixel density Information about the number of pixels per centimeter (ppcm) or per inch (ppi) of the display. The higher the pixel density, the more detailed and clearer is the information displayed on the screen. | 288 ppi (pixels per inch) 113 ppcm (pixels per centimeter) |
Color depth The color depth of the display is also known as bit depth. It shows the number of bits used for the color components of one pixel. Information about the maximum number of colors the screen can display. | 24 bit 16777216 colors |
Display area The estimated percentage of the screen area from the device's front area. | 81.81 % (percent) |
Other features Information about other functions and features of the display. | Capacitive Multi-touch |
600 cd/m² |
Sensors
Different sensors measure different physical quantities and convert them into signals recognizable by the mobile device.
Sensors Sensors vary in type and purpose. They increase the overall functionality of the device, in which they are integrated. | Proximity Accelerometer Compass Gyroscope Fingerprint Hall |
Rear camera
The primary camera of the mobile device is usually placed on its back and can be combined with one or more additional cameras.
Sensor type Information about the sensor type of the camera. Some of the most widely used types of image sensors on mobile devices are CMOS, BSI, ISOCELL, etc. | CMOS (complementary metal-oxide semiconductor) |
Sensor format The optical format of an image sensor is an indication of its shape and size. It is usually expressed in inches. | 1/3.4" |
Pixel size Pixels are usually measured in microns (μm). Larger ones are capable of recording more light, hence, will offer better low light shooting and wider dynamic range compared to the smaller pixels. On the other hand, smaller pixels allow for increasing the resolution while preserving the same sensor size. | 1 µm (micrometers) 0.001000 mm (millimeters) |
Aperture The aperture (f-stop number) indicates the size of the lens diaphragm opening, which controls the amount of light reaching the image sensor. The lower the f-stop number, the larger the diaphragm opening is, hence, the more light reaches the sensor. Usually, the f-stop number specified is the one that corresponds to the maximum possible diaphragm opening. | f/2 |
Focal length and 35 mm equivalent Focal length is the distance in millimeters from the focal point of the image sensor to the optical center of the lens. The 35 mm equivalent indicates the focal length at which a full-frame camera will achieve an angle of view that's the same as the one of the camera of the mobile device. It is measured by multiplying the native focal length of the camera by the crop factor of the sensor. The crop factor itself can be determined as the ratio between the diagonal distances of the image sensor in the 35 mm camera and a given sensor. | 3.08 mm (millimeters) 26 mm (millimeters) *(35 mm / full frame) |
Field of view In photography, the Field of view (FoV) depends not only on the focal length of the lens but also on the sensor size. It is derived from the lens's angle of view and the sensor's crop factor. The lens's angle of view is a measure of the angle between the two farthest separated points within the frame measured diagonally. Simply put, this is how much of a scene in front of the camera will be captured by the camera's sensor. | 80 ° (degrees) |
Flash type The rear cameras of mobile devices use mainly a LED flash. It may arrive in a single, dual- or multi-light setup and in different arrangements. | LED |
Image resolution One of the main characteristics of the cameras is their image resolution. It states the number of pixels on the horizontal and vertical dimensions of the image, which can also be shown in megapixels that indicate the approximate number of pixels in millions. | 4160 x 3120 pixels 12.98 MP (megapixels) |
Video resolution Information about the maximum resolution at which the rear camera can shoot videos. | 3840 x 2160 pixels 8.29 MP (megapixels) |
Video FPS Information about the maximum number of frames per second (fps) supported by the rear camera while recording video at the maximum resolution. Some of the main standard frame rates for recording and playing video are 24 fps, 25 fps, 30 fps, 60 fps. | 30 fps (frames per second) |
Features Information about additional software and hardware features of the rear camera which improve its overall performance. | Autofocus Continuous shooting Digital zoom Geotagging Panorama HDR Touch focus Face detection White balance settings ISO settings Exposure compensation Self-timer Scene mode |
Front camera
Modern smartphones have one or more front cameras and their positioning has led to various design concepts – pop-up camera, rotating camera, notch, punch hole, under-display camera, etc.
Sensor format The optical format of an image sensor is an indication of its shape and size. It is usually expressed in inches. | 1/4" |
Pixel size Pixels are usually measured in microns (μm). Larger ones are capable of recording more light, hence, will offer better low light shooting and wider dynamic range compared to the smaller pixels. On the other hand, smaller pixels allow for increasing the resolution while preserving the same sensor size. | 1.12 µm (micrometers) 0.001120 mm (millimeters) |
Aperture The aperture (f-stop number) indicates the size of the lens diaphragm opening, which controls the amount of light reaching the image sensor. The lower the f-stop number, the larger the diaphragm opening is, hence, the more light reaches the sensor. Usually, the f-stop number specified is the one that corresponds to the maximum possible diaphragm opening. | f/2 |
Focal length and 35 mm equivalent Focal length is the distance in millimeters from the focal point of the image sensor to the optical center of the lens. The 35 mm equivalent indicates the focal length at which a full-frame camera will achieve an angle of view that's the same as the one of the camera of the mobile device. It is measured by multiplying the native focal length of the camera by the crop factor of the sensor. The crop factor itself can be determined as the ratio between the diagonal distances of the image sensor in the 35 mm camera and a given sensor. | 2.61 mm (millimeters) 25 mm (millimeters) *(35 mm / full frame) |
Field of view In photography, the Field of view (FoV) depends not only on the focal length of the lens but also on the sensor size. It is derived from the lens's angle of view and the sensor's crop factor. The lens's angle of view is a measure of the angle between the two farthest separated points within the frame measured diagonally. Simply put, this is how much of a scene in front of the camera will be captured by the camera's sensor. | 80 ° (degrees) |
Image resolution Information about the number of pixels on the horizontal and vertical dimensions of the photos taken by the front camera, indicated in megapixels as well. | 3264 x 2448 pixels 7.99 MP (megapixels) |
Video resolution Information about the maximum resolution of the videos shot by the front camera. | 1920 x 1080 pixels 2.07 MP (megapixels) |
Video FPS Digital cameras are able to shoot videos at different frames per second (fps). Some of the main standard frame rates for recording and playing video are 24 fps, 25 fps, 30 fps, 60 fps. Information about the maximum possible fps for shooting videos at the maximum possible resolution. | 30 fps (frames per second) |
Features Information about additional software and hardware features of the front camera which improve its overall performance. | Face unlock |
Audio
Information about the type of speakers and the audio technologies supported by the device.
Speaker The loudspeaker is a device, which reproduces various sounds such as ring tones, alarms, music, voice calls, etc. Information about the type of speakers the device uses. | Loudspeaker |
4 speakers AKG audio Dolby Atmos Headphone adaptor |
Radio
The radio in a mobile device is a built-in FM radio receiver.
Radio Information whether the device has an FM radio receiver or not. | Yes |
Tracking/Positioning
Information about the positioning and navigation technologies supported by the device.
Tracking/Positioning The tracking/positioning service is provided by various satellite navigation systems, which track the autonomous geo-spatial positioning of the device that supports them. The most common satellite navigation systems are the GPS and the GLONASS. There are also non-satellite technologies for locating mobile devices such as the Enhanced Observed Time Difference, Enhanced 911, GSM Cell ID. | GPS A-GPS GLONASS BeiDou |
Wi-Fi
Wi-Fi is a technology that provides wireless data connections between various devices within a short range.
Wi-Fi Wi-Fi communication between devices is realized via the IEEE 802.11 standards. Some devices have the possibility to serve as Wi-Fi Hotspots by providing internet access for other nearby devices. Wi-Fi Direct (Wi-Fi P2P) is another useful standard that allows devices to communicate with each other without the need for wireless access point (WAP). | 802.11a (IEEE 802.11a-1999) 802.11b (IEEE 802.11b-1999) 802.11g (IEEE 802.11g-2003) 802.11n (IEEE 802.11n-2009) 802.11n 5GHz 802.11ac (IEEE 802.11ac) Dual band Wi-Fi Direct |
Bluetooth
Bluetooth is a standard for secure wireless data transfer between different types of devices over short distances.
Version The technology has several versions, which improve the connection speed, range, connectivity and discoverability of the devices. Information about the Bluetooth version of the device. | 5.0 |
Features Bluetooth uses various profiles and protocols related to faster exchange of data, energy saving, better device discoverability, etc. Some of those supported by the device are listed here. | A2DP (Advanced Audio Distribution Profile) AVRCP (Audio/Visual Remote Control Profile) DIP (Device ID Profile) HFP (Hands-Free Profile) HID (Human Interface Profile) HSP (Headset Profile) MAP (Message Access Profile) OPP (Object Push Profile) PAN (Personal Area Networking Profile) PBAP/PAB (Phone Book Access Profile) HOGP |
USB
The Universal Serial Bus (USB) is an industry standard that allows different electronic devices to exchange data.
Connector type There are several USB connector types: the Standard one, the Mini and Micro connectors, On-The-Go connectors, etc. Type of the USB connector used by the device. | USB Type-C |
Version There are several versions of the Universal Serial Bus (USB) standard: USB 1.0 (1996), the USB 2.0 (2000), the USB 3.0 (2008), etc. With each following version the rate of data transfer is increased. | 3.1 |
Features Тhe USB interface in mobile devices may be used for different purposes such as battery charging, using the device as a mass storage, host, etc. | Charging Mass storage On-The-Go |
Headphone jack
The headphone jack is an audio phone connector, a.k.a. an audio jack. The most widely used one in mobile devices is the 3.5 mm headphone jack.
Headphone jack Information whether the device is equipped with a 3.5 mm audio jack. | No |
Connectivity
Information about other important connectivity technologies supported by the devices.
Connectivity Information about some of the most widely used connectivity technologies supported by the device. | Computer sync OTA sync Tethering VoLTE ANT+ |
Browser
A web browser is a software application for accessing, fetching, displaying and navigating through information on the World Wide Web.
Browser Information about some of the features and standards supported by the browser of the device. | HTML HTML5 CSS 3 |
Audio file formats/codecs
Mobile devices support various audio file formats and codecs, which respectively store and code/decode digital audio data.
Audio file formats/codecs List of some of the most common audio file formats and codecs supported standardly by the device. | AAC (Advanced Audio Coding) AMR / AMR-NB / GSM-AMR (Adaptive Multi-Rate, .amr, .3ga) AMR-WB (Adaptive Multi-Rate Wideband, .awb) eAAC+ / aacPlus v2 / HE-AAC v2 FLAC (Free Lossless Audio Codec, .flac) M4A (MPEG-4 Audio, .m4a) MIDI MP3 (MPEG-2 Audio Layer II, .mp3) OGG (.ogg, .ogv, .oga, .ogx, .spx, .opus) WMA (Windows Media Audio, .wma) WAV (Waveform Audio File Format, .wav, .wave) |
Video file formats/codecs
Mobile devices support various video file formats and codecs, which respectively store and code/decode digital video data.
Video file formats/codecs List of some of the most common video file formats and codecs supported standardly by the device. | 3GPP (3rd Generation Partnership Project, .3gp) 3GPP2 (3rd Generation Partnership Project 2, .3g2) AVI (Audio Video Interleaved, .avi) Flash Video (.flv, .f4v, .f4p, .f4a, .f4b) H.263 H.264 / MPEG-4 Part 10 / AVC video H.265 / MPEG-H Part 2 / HEVC MKV (Matroska Multimedia Container, .mkv .mk3d .mka .mks) MP4 (MPEG-4 Part 14, .mp4, .m4a, .m4p, .m4b, .m4r, .m4v) VC-1 VP8 VP9 WebM WMV (Windows Media Video, .wmv) WMV7 (Windows Media Video 7, .wmv) WMV8 (Windows Media Video 8, .wmv) Xvid |
Battery
The batteries of mobile devices differ in capacity and technology. They provide the electrical charge needed for the functioning of the devices.
Capacity The capacity of a battery shows the maximum charge, which it can store, measured in mili-Ampere hours. | 7040 mAh (milliampere-hours) |
Type The battery type is determined by its structure and more specifically, by the chemicals used in it. There are different battery types and some of the most commonly used in mobile devices are the lithium-ion (Li-Ion) and the lithium-ion polymer battery (Li-Polymer). | Li-Polymer |
Features Information about some additional features of the device's battery. | Fast charging Non-removable |
Battery life - up to 14.5 h |
Additional features
Some devices have additional features, different from the standard ones above, but equally important and worth mentioning.
Additional features Information about other features of the device. | Samsung DeX |