Google Pixel 4a - Specifications
Brand and model
Information about the brand, model and model alias (if any) of a specific device.
Brand Brand name of the company that manufactures the device. | |
Model Model name of the device. | Pixel 4a |
Design
Information about the dimensions and weight of the device, shown in different measurement units. Body materials, available colors, certifications.
Width Information about the width, i.e. the horizontal side of the device when it is used in its standard orientation. | 69.4 mm (millimeters) 6.94 cm (centimeters) 0.228 ft (feet) 2.732 in (inches) |
Height Information about the height, i.e. the vertical side of the device when it is used in its standard orientation. | 144 mm (millimeters) 14.4 cm (centimeters) 0.472 ft (feet) 5.669 in (inches) |
Thickness Information about the thickness/depth of the device in different measurement units. | 8.2 mm (millimeters) 0.82 cm (centimeters) 0.027 ft (feet) 0.323 in (inches) |
Weight Information about the weight of the device in different measurement units. | 143 g (grams) 0.32 lbs (pounds) 5.04 oz (ounces) |
Volume Estimated volume of the device, calculated from the dimensions provided by the manufacturer. Applies for devices in the form of a rectangular parallelepiped. | 81.95 cm³ (cubic centimeters) 4.98 in³ (cubic inches) |
Colors Information about the colors, in which the device is available in the market. | Just Black |
Body materials Materials used in the fabrication of the device's body. | Glass Polycarbonate |
SIM card
The Subscriber Identity Module (SIM) is used in mobile devices for storing data authenticating the subscribers of mobile services.
SIM card type Information about the type and size (form factor) of the SIM card used in the device. | Nano-SIM (4FF - fourth form factor, since 2012, 12.30 x 8.80 x 0.67 mm) |
Number of SIM cards Information about the number of SIM cards, supported by the device. | 1 |
Networks
A mobile (cellular) network is a radio system, which allows a large number of mobile devices to communicate with each other.
GSM GSM (Global System for Mobile Communications) was developed to replace the analog cellular network (1G), therefore it is referred to as a 2G mobile network. It has been improved with the addition of General Packet Radio Services (GPRS) and later via the Enhanced Data rates for GSM Evolution (EDGE) technology. | GSM 850 MHz (B5) GSM 900 MHz (B8) GSM 1800 MHz (B3) GSM 1900 MHz (B2) |
CDMA CDMA (Code-Division Multiple Access) is a channel access method for communications within mobile networks. Compared to other 2G and 2.5G standards like GSM and TDMA, it provides increased data transfer speeds and allows more subscribers to connect simultaneously to the network. | CDMA 800 MHz (BC0) CDMA 1900 MHz (BC1) CDMA 800 MHz (BC10) |
UMTS UMTS stands for Universal Mobile Telecommunications System. Based on the GSM standard, it is deemed as a 3G mobile network standard. It has been developed by the 3GPP and its major advantage is the provision of greater bandwidth and spectral efficiency, due to the W-CDMA technology. | UMTS 850 MHz (B5) UMTS 900 MHz (B8) UMTS 1700 MHz (B4) UMTS 1900 MHz (B2) UMTS 2100 MHz (B1) |
LTE LTE is deemed to be the fourth generation (4G) of mobile communications technology. It has been developed by the 3GPP based on the GSM/EDGE and UMTS/HSPA technologies in order to increase the speed and capacity of wireless data networks. A further development of the technology is called LTE Advanced. | LTE-FDD 700 MHz (B12) LTE-FDD 700 MHz (B13) LTE-FDD 700 MHz (B14) LTE-FDD 700 MHz (B17) LTE-FDD 700 MHz (B28) LTE-FDD 700 MHz (B29) LTE-FDD 800 MHz (B20) LTE-FDD 850 MHz (B5) LTE-FDD 850 MHz (B18) LTE-FDD 850 MHz (B19) LTE-FDD 850 MHz (B26) LTE-FDD 900 MHz (B8) LTE-FDD 1700 MHz (B4) LTE-FDD 1700 MHz (B66) LTE-FDD 1800 MHz (B3) LTE-FDD 1900 MHz (B2) LTE-FDD 1900 MHz (B25) LTE-FDD 2100 MHz (B1) LTE-FDD 2600 MHz (B7) LTE-TDD 1900 MHz (B39) LTE-TDD 2300 MHz (B40) LTE-TDD 2500 MHz (B41) LTE-TDD 2600 MHz (B38) LTE-FDD 2300 MHz (B30) LTE-TDD 5200 MHz (B46) LTE-TDD 3500 MHz (B46) LTE-FDD 600 MHz (B71) |
Mobile network technologies and bandwidth
Communication between devices within mobile networks is realized via various generations of network technologies, which provide different bandwidth.
Mobile network technologies There are several network technologies that enhance the performance of mobile networks mainly by increased data bandwidth. Information about the communication technologies supported by the device and their respective uplink and downlink bandwidth. | UMTS (384 kbit/s ) EDGE GPRS HSPA+ (HSUPA 42.2 Mbit/s , HSDPA 5.76 Mbit/s ) LTE EV-DO Rev. A (1.8 Mbit/s , 3.1 Mbit/s ) |
2x2 MiMO |
Operating system
Operating system is the system software, which manages and controls the functioning of the hardware components of the device.
Operating system (OS) Information about the operating system used by the device as well as its version. | Android 10 |
System on Chip (SoC)
A system on a chip (SoC) includes into a single chip some of the main hardware components of the mobile device.
SoC The SoC integrates different hardware components such as the CPU, GPU, memory, peripherals, interfaces, etc., as well as software for their functioning. | Qualcomm Snapdragon 730G (SM7150-AB) |
Process technology Information about the process technology used in manufacturing the chip. The value in nanometers represents half the distance between elements that make up the CPU. | 8 nm (nanometers) |
CPU CPU is the Central Processing Unit or the processor of a mobile device. Its main function is to interpret and execute instructions contained in software applications. | 2x 2.2 GHz ARM Cortex-A76, 6x 1.8 GHz ARM Cortex-A55 (Kryo 470) |
CPU bits The CPU bits are determined by the bit-size of the processor registers, address buses and data buses. 64-bit CPUs provide better performance than 32-bit ones, which on their part perform better than 16-bit processors. | 64 bit |
Instruction set The instruction set architecture (ISA) is a set of commands used by the software to manage the CPU's work. Information about the set of instructions the processor can execute. | ARMv8.2-A |
CPU cores A CPU core is the processor unit, which executes software instructions. Presently, besides single-core processors, there are dual-core, quad-core, hexa-core and so on multi-core processors. They increase the performance of the device allowing the execution of multiple instructions in parallel. | 8 |
CPU frequency The frequency of the processor describes its clock rate in cycles per second. It is measured in Megahertz (MHz) or Gigahertz (GHz). | 2200 MHz (megahertz) |
GPU GPU is a graphical processing unit, which handles computation for 2D/3D graphics applications. In mobile devices GPU is usually utilized by games, UI, video playback, etc. GPU can also perform computation in applications traditionally handled by the CPU. | Qualcomm Adreno 618 |
GPU frequency The frequency is the clock rate of the graphic processor (GPU), which is measured in Megahertz (MHz) or Gigahertz (GHz). | 700 MHz (megahertz) |
RAM capacity RAM (Random-Access Memory) is used by the operating system and all installed applications. Data in the RAM is lost after the device is turned off or restarted. | 6 GB (gigabytes) |
RAM type Information about the type of RAM used by the device. | LPDDR4X |
RAM channels Information about the number of RAM channels integrated in the SoC. More channels mean higher data transfer rates. | Double channel |
RAM frequency RAM frequency relates directly to the rate of reading/writing from/in the RAM memory. | 1866 MHz (megahertz) |
Titan M Security Module |
Storage
Every mobile device has a built-in storage (internal memory) with a fixed capacity.
Storage Information about the capacity of the built-in storage of the device. Sometimes one and the same model may is offered in variants with different internal storage capacity. | 128 GB (gigabytes) |
UFS 2.1 |
Display
The display of a mobile device is characterized by its technology, resolution, pixel density, diagonal length, color depth, etc.
Type/technology One of the main characteristics of the display is its type/technology, on which depends its performance. | OLED |
Diagonal size In mobile devices display size is represented by the length of its diagonal measured in inches. | 5.81 in (inches) 147.57 mm (millimeters) 14.76 cm (centimeters) |
Width Approximate width of the display | 2.43 in (inches) 61.84 mm (millimeters) 6.18 cm (centimeters) |
Height Approximate height of the display | 5.28 in (inches) 133.99 mm (millimeters) 13.4 cm (centimeters) |
Aspect ratio The ratio between the long and the short side of the display | 2.167:1 |
Resolution The display resolution shows the number of pixels on the horizontal and vertical side of the screen. The higher the resolution is, the greater the detail of the displayed content. | 1080 x 2340 pixels |
Pixel density Information about the number of pixels per centimeter (ppcm) or per inch (ppi) of the display. The higher the pixel density, the more detailed and clearer is the information displayed on the screen. | 444 ppi (pixels per inch) 174 ppcm (pixels per centimeter) |
Color depth The color depth of the display is also known as bit depth. It shows the number of bits used for the color components of one pixel. Information about the maximum number of colors the screen can display. | 24 bit 16777216 colors |
Display area The estimated percentage of the screen area from the device's front area. | 83.18 % (percent) |
Other features Information about other functions and features of the display. | Capacitive Multi-touch Scratch resistant |
Ambient EQ Corning Gorilla Glass 3 Always-on Display HDR (UHDA certification) |
Sensors
Different sensors measure different physical quantities and convert them into signals recognizable by the mobile device.
Sensors Sensors vary in type and purpose. They increase the overall functionality of the device, in which they are integrated. | Proximity Light Accelerometer Compass Gyroscope Barometer Magnetometer Gravity |
Active Edge Motion Sense (Soli radar) |
Rear camera
The primary camera of the mobile device is usually placed on its back and can be combined with one or more additional cameras.
Sensor model Information about the manufacturer and model of the image sensor used by this camera of the device. | Sony IMX363 Exmor RS |
Sensor type Information about the sensor type of the camera. Some of the most widely used types of image sensors on mobile devices are CMOS, BSI, ISOCELL, etc. | CMOS (complementary metal-oxide semiconductor) |
Sensor format The optical format of an image sensor is an indication of its shape and size. It is usually expressed in inches. | 1/2.55" |
Pixel size Pixels are usually measured in microns (μm). Larger ones are capable of recording more light, hence, will offer better low light shooting and wider dynamic range compared to the smaller pixels. On the other hand, smaller pixels allow for increasing the resolution while preserving the same sensor size. | 1.4 µm (micrometers) 0.001400 mm (millimeters) |
Aperture The aperture (f-stop number) indicates the size of the lens diaphragm opening, which controls the amount of light reaching the image sensor. The lower the f-stop number, the larger the diaphragm opening is, hence, the more light reaches the sensor. Usually, the f-stop number specified is the one that corresponds to the maximum possible diaphragm opening. | f/1.7 |
Focal length and 35 mm equivalent Focal length is the distance in millimeters from the focal point of the image sensor to the optical center of the lens. The 35 mm equivalent indicates the focal length at which a full-frame camera will achieve an angle of view that's the same as the one of the camera of the mobile device. It is measured by multiplying the native focal length of the camera by the crop factor of the sensor. The crop factor itself can be determined as the ratio between the diagonal distances of the image sensor in the 35 mm camera and a given sensor. | 27 mm (millimeters) *(35 mm / full frame) |
Field of view In photography, the Field of view (FoV) depends not only on the focal length of the lens but also on the sensor size. It is derived from the lens's angle of view and the sensor's crop factor. The lens's angle of view is a measure of the angle between the two farthest separated points within the frame measured diagonally. Simply put, this is how much of a scene in front of the camera will be captured by the camera's sensor. | 77 ° (degrees) |
Flash type The rear cameras of mobile devices use mainly a LED flash. It may arrive in a single, dual- or multi-light setup and in different arrangements. | Dual LED |
Image resolution One of the main characteristics of the cameras is their image resolution. It states the number of pixels on the horizontal and vertical dimensions of the image, which can also be shown in megapixels that indicate the approximate number of pixels in millions. | 4032 x 3024 pixels 12.19 MP (megapixels) |
Video resolution Information about the maximum resolution at which the rear camera can shoot videos. | 3840 x 2160 pixels 8.29 MP (megapixels) |
Video FPS Information about the maximum number of frames per second (fps) supported by the rear camera while recording video at the maximum resolution. Some of the main standard frame rates for recording and playing video are 24 fps, 25 fps, 30 fps, 60 fps. | 30 fps (frames per second) |
Features Information about additional software and hardware features of the rear camera which improve its overall performance. | Autofocus Continuous shooting Digital zoom Optical zoom Digital image stabilization Optical image stabilization Geotagging Panorama HDR Touch focus Face detection White balance settings ISO settings Exposure compensation Self-timer Scene mode Phase detection autofocus (PDAF) |
Phase detection with Dual Pixel 1080p @ 120 fps 720p @ 240 fps |
Front camera
Modern smartphones have one or more front cameras and their positioning has led to various design concepts – pop-up camera, rotating camera, notch, punch hole, under-display camera, etc.
Sensor model Information about the manufacturer and model of the image sensor used by this camera of the device. | Sony IMX355 |
Sensor type Information about the sensor type of the camera. Some of the most widely used types of image sensors on mobile devices are CMOS, BSI, ISOCELL, etc. | CMOS (complementary metal-oxide semiconductor) |
Sensor format The optical format of an image sensor is an indication of its shape and size. It is usually expressed in inches. | 1/3.92" |
Pixel size Pixels are usually measured in microns (μm). Larger ones are capable of recording more light, hence, will offer better low light shooting and wider dynamic range compared to the smaller pixels. On the other hand, smaller pixels allow for increasing the resolution while preserving the same sensor size. | 1.12 µm (micrometers) 0.001120 mm (millimeters) |
Aperture The aperture (f-stop number) indicates the size of the lens diaphragm opening, which controls the amount of light reaching the image sensor. The lower the f-stop number, the larger the diaphragm opening is, hence, the more light reaches the sensor. Usually, the f-stop number specified is the one that corresponds to the maximum possible diaphragm opening. | f/2 |
Focal length and 35 mm equivalent Focal length is the distance in millimeters from the focal point of the image sensor to the optical center of the lens. The 35 mm equivalent indicates the focal length at which a full-frame camera will achieve an angle of view that's the same as the one of the camera of the mobile device. It is measured by multiplying the native focal length of the camera by the crop factor of the sensor. The crop factor itself can be determined as the ratio between the diagonal distances of the image sensor in the 35 mm camera and a given sensor. | 22 mm (millimeters) *(35 mm / full frame) |
Field of view In photography, the Field of view (FoV) depends not only on the focal length of the lens but also on the sensor size. It is derived from the lens's angle of view and the sensor's crop factor. The lens's angle of view is a measure of the angle between the two farthest separated points within the frame measured diagonally. Simply put, this is how much of a scene in front of the camera will be captured by the camera's sensor. | 84 ° (degrees) |
Image resolution Information about the number of pixels on the horizontal and vertical dimensions of the photos taken by the front camera, indicated in megapixels as well. | 3264 x 2448 pixels 7.99 MP (megapixels) |
Video resolution Information about the maximum resolution of the videos shot by the front camera. | 1920 x 1080 pixels 2.07 MP (megapixels) |
Video FPS Digital cameras are able to shoot videos at different frames per second (fps). Some of the main standard frame rates for recording and playing video are 24 fps, 25 fps, 30 fps, 60 fps. Information about the maximum possible fps for shooting videos at the maximum possible resolution. | 30 fps (frames per second) |
Features Information about additional software and hardware features of the front camera which improve its overall performance. | HDR Face detection Face unlock |
2 NIR cameras NIR flood emitter NIR dot projector |
Audio
Information about the type of speakers and the audio technologies supported by the device.
Speaker The loudspeaker is a device, which reproduces various sounds such as ring tones, alarms, music, voice calls, etc. Information about the type of speakers the device uses. | Loudspeaker Earpiece Stereo speakers |
Active noise cancellation HAC (M3/T3) - Hearing Aid Compatibility |
Radio
The radio in a mobile device is a built-in FM radio receiver.
Radio Information whether the device has an FM radio receiver or not. | No |
Tracking/Positioning
Information about the positioning and navigation technologies supported by the device.
Tracking/Positioning The tracking/positioning service is provided by various satellite navigation systems, which track the autonomous geo-spatial positioning of the device that supports them. The most common satellite navigation systems are the GPS and the GLONASS. There are also non-satellite technologies for locating mobile devices such as the Enhanced Observed Time Difference, Enhanced 911, GSM Cell ID. | GPS A-GPS GLONASS Galileo |
Wi-Fi
Wi-Fi is a technology that provides wireless data connections between various devices within a short range.
Wi-Fi Wi-Fi communication between devices is realized via the IEEE 802.11 standards. Some devices have the possibility to serve as Wi-Fi Hotspots by providing internet access for other nearby devices. Wi-Fi Direct (Wi-Fi P2P) is another useful standard that allows devices to communicate with each other without the need for wireless access point (WAP). | 802.11a (IEEE 802.11a-1999) 802.11b (IEEE 802.11b-1999) 802.11g (IEEE 802.11g-2003) 802.11n (IEEE 802.11n-2009) 802.11n 5GHz 802.11ac (IEEE 802.11ac) Dual band Wi-Fi Hotspot Wi-Fi Direct Wi-Fi Display |
2x2 MiMO |
Bluetooth
Bluetooth is a standard for secure wireless data transfer between different types of devices over short distances.
Version The technology has several versions, which improve the connection speed, range, connectivity and discoverability of the devices. Information about the Bluetooth version of the device. | 5.0 |
Features Bluetooth uses various profiles and protocols related to faster exchange of data, energy saving, better device discoverability, etc. Some of those supported by the device are listed here. | A2DP (Advanced Audio Distribution Profile) LE (Low Energy) |
USB
The Universal Serial Bus (USB) is an industry standard that allows different electronic devices to exchange data.
Connector type There are several USB connector types: the Standard one, the Mini and Micro connectors, On-The-Go connectors, etc. Type of the USB connector used by the device. | USB Type-C |
Version There are several versions of the Universal Serial Bus (USB) standard: USB 1.0 (1996), the USB 2.0 (2000), the USB 3.0 (2008), etc. With each following version the rate of data transfer is increased. | 3.1 |
Features Тhe USB interface in mobile devices may be used for different purposes such as battery charging, using the device as a mass storage, host, etc. | Charging Mass storage On-The-Go |
Headphone jack
The headphone jack is an audio phone connector, a.k.a. an audio jack. The most widely used one in mobile devices is the 3.5 mm headphone jack.
Headphone jack Information whether the device is equipped with a 3.5 mm audio jack. | Yes |
Connectivity
Information about other important connectivity technologies supported by the devices.
Connectivity Information about some of the most widely used connectivity technologies supported by the device. | Computer sync OTA sync Tethering NFC VoLTE |
Browser
A web browser is a software application for accessing, fetching, displaying and navigating through information on the World Wide Web.
Browser Information about some of the features and standards supported by the browser of the device. | HTML HTML5 CSS 3 |
Audio file formats/codecs
Mobile devices support various audio file formats and codecs, which respectively store and code/decode digital audio data.
Audio file formats/codecs List of some of the most common audio file formats and codecs supported standardly by the device. | AAC (Advanced Audio Coding) AAC+ / aacPlus / HE-AAC v1 AMR / AMR-NB / GSM-AMR (Adaptive Multi-Rate, .amr, .3ga) AMR-WB (Adaptive Multi-Rate Wideband, .awb) aptX / apt-X aptX HD / apt-X HD / aptX Lossless eAAC+ / aacPlus v2 / HE-AAC v2 FLAC (Free Lossless Audio Codec, .flac) M4A (MPEG-4 Audio, .m4a) MIDI MP3 (MPEG-2 Audio Layer II, .mp3) OGG (.ogg, .ogv, .oga, .ogx, .spx, .opus) WMA (Windows Media Audio, .wma) WAV (Waveform Audio File Format, .wav, .wave) LDAC |
Video file formats/codecs
Mobile devices support various video file formats and codecs, which respectively store and code/decode digital video data.
Video file formats/codecs List of some of the most common video file formats and codecs supported standardly by the device. | 3GPP (3rd Generation Partnership Project, .3gp) AVI (Audio Video Interleaved, .avi) DivX (.avi, .divx, .mkv) Flash Video (.flv, .f4v, .f4p, .f4a, .f4b) H.263 H.264 / MPEG-4 Part 10 / AVC video H.265 / MPEG-H Part 2 / HEVC MKV (Matroska Multimedia Container, .mkv .mk3d .mka .mks) QuickTime (.mov, .qt) MP4 (MPEG-4 Part 14, .mp4, .m4a, .m4p, .m4b, .m4r, .m4v) VC-1 VP8 WebM WMV (Windows Media Video, .wmv) Xvid |
Battery
The batteries of mobile devices differ in capacity and technology. They provide the electrical charge needed for the functioning of the devices.
Capacity The capacity of a battery shows the maximum charge, which it can store, measured in mili-Ampere hours. | 3140 mAh (milliampere-hours) |
Type The battery type is determined by its structure and more specifically, by the chemicals used in it. There are different battery types and some of the most commonly used in mobile devices are the lithium-ion (Li-Ion) and the lithium-ion polymer battery (Li-Polymer). | Li-Polymer |
Charger output power Information about the electric current (amperes) and voltage (volts) the charger outputs. The higher power output allows faster charging. | 9 V (volts) / 2 A (amps) |
Quick charge technology Quick charge technologies differ in energy efficiency, power output, control over charging, temperatures, etc. The device, battery and charger must support one and the same charging technology to achieve faster charging times. | USB Power Delivery 2.0 |
Features Information about some additional features of the device's battery. | Fast charging Non-removable |
Specific Absorption Rate (SAR)
The SAR rating shows the amount of electromagnetic radiation absorbed by the human body when using a mobile device, expressed in W/kg.
Head SAR (EU) The SAR head rating shows the highest level of exposure to electromagnetic radiation measured when the device is held next to the ear in a talk position. In Europe, the SAR limit for hand-held mobile devices is set to 2 W/kg per 10 g of tissue. This standard is specified by the CENELEC, complies with the IEC standards and follows the ICNIRP Guidelines 1998. | 1.37 W/kg (watts per kilogram) |
Body SAR (EU) This SAR rating shows the highest level of exposure to electromagnetic radiation measured when the device is placed at the hip level. The top SAR value for mobile devices used in Europe is limited to 2 W/kg per 10 g of tissue. This standard follows the ICNIRP Guidelines 1998 as well as the IEC standards and is determined by the CENELEC. | 1.39 W/kg (watts per kilogram) |
Head SAR (USA) This SAR rating shows the maximum level of exposure to electromagnetic radiation taken when the device is placed next to the ear. The applicable limit for the US is 1.6 W/kg per 1 g of tissue. In the US the FCC tests and sets the SAR limits for all mobile devices, which are controlled by the CTIA. | 1.18 W/kg (watts per kilogram) |
Body SAR (USA) The SAR body rating shows the maximum level of exposure to electromagnetic radiation when the device is positioned against the body at the hip. The highest SAR value of mobile devices allowed in the US is set to 1.6 W/kg per 1 g of tissue. It is specified by the FCC and the CTIA follows whether the mobile devices comply with this standard. | 1.19 W/kg (watts per kilogram) |